

INDIAN SCHOOL MUSCAT FINAL TERM EXAMINATION MATHEMATICS

CLASS: IX

Sub. Code: 041

Time Allotted: 3 Hrs

2

24.02,2019

Max. Marks: 80

General Instructions:

1. All questions are **compulsory**.

2. The question paper consists of 30 questions divided into four sections A, B, C and D.

- 3. Section-A comprises of 6 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 8 questions of 4 marks each.
- 4. There is no overall choice in this question paper. However, an internal choice has been given for two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each.
- 5. Use of calculator is not permitted.

SECTION - A

1 Find the value of $\left[(64)^{\frac{1}{2}} \right]^{\frac{1}{3}}$.

Find the mode of the numbers: 14, 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18.

Find the value of the polynomial $p(m) = m^2 - 2m + 8$ at m = 2.

OR

If f(x) = 3x + 9, find the value of f(7).

The total surface area of a cube is 1014 cm². Find the length of its edge.

OR

Calculate the volume of a cuboid whose dimensions are 8 cm, 6cm and 2.5 cm.

Find the supplement of $\frac{5}{3}$ of a right angle.

6 State any one Euclid's axiom.

SECTION - B

Find the value of 'k' so that x = -1 and y = -1 is a solution of the linear equation 9kx + 12ky = 63.

A die is thrown 100 times and the outcomes are recorded as follows:

OUTCOME	1	2	3	4	5	6
FREQUENCY	25	20	12	18	15	10

If the die is thrown once again, what is the probability of getting (a) an even number (b) a prime number.

Find the curved surface area of a right circular cone whose slant height is 20cm and height is 16cm. 2 9 (Take $\pi = 3.14$) In the figure, E is any point on median AD of 2 10 \triangle ABC. Show that ar(\triangle ABE) = ar(\triangle ACE)

OR

D and E are points on sides AB and AC respectively of \triangle ABC such that $ar(\triangle DBC) = ar(\triangle EBC)$. Prove that DE BC.

- 11 Construct a $\triangle ABC$ in which BC = 5cm, AB + AC = 7 cm and $\angle B = 60^{\circ}$. 2
- Prove that equal chords of a circle subtend equal angles at the centre. 12

2

3

3

OR

If a line intersects 2 concentric circles with centre O at A, B, C and D, then prove that AB = CD.

SECTION - C

- 13 In a parallelogram, show that the angle bisectors of 2 adjacent angles meet at right angle. OR In \triangle ABC, D, E and F are the mid points of sides AB, BC and CA. If AB = 6 cm, BC = 7.2 cm and AC = 7.8 cm, then find the perimeter of Δ DEF.
- For what value of k, is the polynomial $p(x) = 2x^3 kx^2 + 3x + 10$ exactly divisible by (x + 2)? 14 3 The polynomial $ax^3 + 3x^2 - 13$ and $2x^3 - 5x + a$ leave the same remainder in each case, when divided by (x-2). Find the value of 'a'
- Three coins were tossed 30 times simultaneously. Each time, the number of tails occurring was 15 3 noted down as follows: 0, 1, 1, 2, 0, 3, 1, 2, 0, 0, 1, 3, 2, 2, 0, 2, 3 1, 0, 1, 1, 3, 0, 2, 0, 1, 0, 3, 2, 0. Prepare a frequency distribution table for the data.
- 16 Factorize completely: $16m^3 - 54n^3$.
 - AB and CD are 2 parallel chords of a circle, which is on opposite side of the centre, such that AB 17 3 =10 cm, and CD =24 cm. If the distance between the chords is 17 cm, then find the radius of the circle.

OR

ABCD is a cyclic quadrilateral whose diagonals intersect at E. If $\angle DBC = 70^{\circ}$, $\angle BAC = 30^{\circ}$, find $\angle BCD$. Further, if AB = BC, find $\angle ECD$.

The sides of a triangle are 120m, 170m and 250m. Find its area and height of the triangle, if its base 18 3 is 250m.

In the given figure, PR > PQ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$.

- The total surface area of a solid right circular cylinder is 1540 cm². If the height is 4 times the radius of the base, then find the height of the cylinder.
- 21 Construct a $\triangle ABC$, in which $\angle B = 30^{\circ}$, $\angle C = 90^{\circ}$ and AB + BC + CA = 12cm.
- Represent $\sqrt{5}$ on the number line.

Show that
$$\frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} = 1$$
.

SECTION - D

A hemispherical bowl, full of milk, has internal diameter 36 cm. The milk is to be filled in cylindrical bottles of radius 3 cm and height 6 cm. How many bottles are required to empty the bowl?

Metallic spheres of radii 6 m, 8 m and 10 m respectively are melted to form a single solid sphere. Find the diameter of the resulting sphere.

- By long division method, show that (x-3) is a factor of $2x^4 + 3x^3 26x^2 5x + 6$.
- If $x = \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} \sqrt{6}}$ and $y = \frac{\sqrt{7} \sqrt{6}}{\sqrt{7} + \sqrt{6}}$, then find the value of (y + x).
- In the figure, $\triangle ABC$ and $\triangle ABD$ are such that AD = BC, $\angle CAD = \angle DBC$ and $\angle CAB = \angle DBA$. Prove that BD = AC.

3

OR

In the figure, ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. Prove that

- (i) $\triangle ABD \cong \triangle BAC$
- (ii) BD = AC
- $(iii) \angle ABD = \angle BAC$

Draw the graph of the linear equation x + y = 7. Verify from the graph that (8, -1) is a solution of the equation x + y = 7.

- Without drawing the graph, find, in which quadrant or on which axis do each of the following points 4 lie? (a) (-2, 4), (b) (3, -1), (c) (-3, -5), (d) (-1,0), (e) (1, 2), (f) (0, 4), (g) (-5, -1) and (h) (0, -7).
- In the given figure, AB||CD, CD||EF and $EA \perp AB$. If $\angle BEF = 65^{\circ}$ find the values of w, x, y and z

OR

In the given figure, AP is the angle bisector of $\angle A$ and PQ is the bisector of $\angle ACD$. Prove that $\angle APC = \frac{1}{2} \angle ABC$.

Consider the marks obtained by 50 students of a class in a test, out of 80.

Marks	0 - 20	20 - 40	40 - 60	60 - 80
No. of Students	14	11	12	13

Draw a histogram and a frequency polygon for the data on the same graph sheet.

End of the Question Paper

INDIAN SCHOOL MUSCAT FINAL TERM EXAMINATION MATHEMATICS

CLASS: IX

Sub. Code: 041

Time Allotted: 3 Hrs

2

24.02.2019

Max. Marks: 80

General Instructions:

1. All questions are **compulsory**.

2. The question paper consists of 30 questions divided into four sections A, B, C and D.

- 3. Section-A comprises of 6 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 8 questions of 4 marks each.
- 4. There is no overall choice in this question paper. However, an internal choice has been given for two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each.
- 5. Use of calculator is not permitted.

SECTION - A

- Find the supplement of $\frac{5}{3}$ of a right angle.
- Find the mode of the numbers: 14, 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18.
- 3 State any one Euclid's axiom.

The total surface area of a cube is 1014 cm². Find the length of its edge.

The total surface area of a cube is 1014 cm². Find the length of its edge. **OR**

Calculate the volume of a cuboid whose dimensions are 8 cm, 6cm and 2.5 cm.

Find the value of the polynomial $p(m) = m^2 - 2m + 8$ at m = 2.

OR

If f(x) = 3x + 9, find the value of f(7).

Find the value of $\left[(64)^{\frac{1}{2}} \right]^{\frac{1}{3}}$.

SECTION - B

- Find the curved surface area of a right circular cone whose slant height is 20cm and height is 16cm. 2 (Take $\pi = 3.14$)
- A die is thrown 100 times and the outcomes are recorded as follows:

11 die 15 die 1711 100 times die 10 totte di								
OUTCOME	1	2	3	4	5	6		
FREQUENCY	25	20	12	18	15	10		

If the die is thrown once again, what is the probability of getting (a) an even number (b) a prime number.

- Find the value of 'k' so that x = -1 and y = -1 is a solution of the linear equation 9kx + 12ky = 63
- If a line intersects 2 concentric circles with centre O at A, B, C and D, then prove that AB = CD.

OR

Prove that equal chords of a circle subtend equal angles at the centre.

Construct a $\triangle ABC$ in which BC = 5cm, AB + AC = 7 cm and $\angle B = 60^{\circ}$.

2

D and E are points on sides AB and AC respectively of \triangle ABC such that $ar(\triangle DBC) = ar(\triangle EBC)$. Prove that DE||BC.

2

2

2

OR

In the figure, E is any point on median AD of \triangle ABC. Show that $ar(\triangle ABE) = ar(\triangle ACE)$

SECTION - C

Factorize completely: $16m^3 - 54n^3$.

3

For what value of k, is the polynomial $p(x) = 2x^3 - kx^2 + 3x + 10$ exactly divisible by (x + 2)?

3

2......

The polynomial $ax^3 + 3x^2 - 13$ and $2x^3 - 5x + a$ leave the same remainder in each case, when divided by (x - 2). Find the value of 'a'

In the given figure, PR > PQ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$.

3

- The sides of a triangle are 120m, 170m and 250m. Find its area and height of the triangle, if its base is 250m.
- In a parallelogram, show that the angle bisectors of 2 adjacent angles meet at right angle.

3

AADC D E and E and the mid m

In \triangle ABC, D, E and F are the mid points of sides AB, BC and CA. If AB = 6 cm, BC = 7.2 cm and AC = 7.8 cm, then find the perimeter of \triangle DEF.

Construct a $\triangle ABC$, in which $\angle B = 30^{\circ}$, $\angle C = 90^{\circ}$ and AB + BC + CA = 12cm.

3

Three coins were tossed 30 times simultaneously. Each time, the number of tails occurring was noted down as follows: 0, 1, 1, 2, 0, 3, 1, 2, 0, 0, 1, 3, 2, 2, 0, 2, 3 1, 0, 1, 1, 3, 0, 2, 0, 1, 0, 3, 2, 0. Prepare a frequency distribution table for the data.

- The total surface area of a solid right circular cylinder is 1540 cm². If the height is 4 times the radius of the base, then find the height of the cylinder.
 - 3

3

4

21 Represent $\sqrt{5}$ on the number line.

OR

Show that
$$\frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} = 1$$
.

AB and CD are 2 parallel chords of a circle, which is on opposite side of the centre, such that AB =10 cm, and CD = 24 cm. If the distance between the chords is 17 cm, then find the radius of the circle.

OR

ABCD is a cyclic quadrilateral whose diagonals intersect at E. If $\angle DBC = 70^{\circ}$, $\angle BAC = 30^{\circ}$, find $\angle BCD$. Further, if AB = BC, find $\angle ECD$.

SECTION - D

In the figure, $\triangle ABC$ and $\triangle ABD$ are such that AD = BC, $\angle CAD = \angle DBC$ and $\angle CAB = \angle DBA$. Prove that BD = AC.

OR

In the figure, ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. Prove that

- (i) $\triangle ABD \cong \triangle BAC$
- (ii) BD = AC
- (iii) $\angle ABD = \angle BAC$

- By long division method, show that (x-3) is a factor of $2x^4 + 3x^3 26x^2 5x + 6$.
- 4
- A hemispherical bowl, full of milk, has internal diameter 36 cm. The milk is to be filled in cylindrical bottles of radius 3 cm and height 6 cm. How many bottles are required to empty the bowl?

OR

Metallic spheres of radii 6 m, 8 m and 10 m respectively are melted to form a single solid sphere. Find the diameter of the resulting sphere.

In the given figure, AB||CD, CD||EF and $EA \perp AB$. If $\angle BEF = 65^{\circ}$ find the values of w, x, y and z

4

4

4

OR

In the given figure, AP is the angle bisector of $\angle A$ and PQ is the bisector of $\angle ACD$. Prove that $\angle APC = \frac{1}{2} \angle ABC$.

27

If
$$x = \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} - \sqrt{6}}$$
 and $y = \frac{\sqrt{7} - \sqrt{6}}{\sqrt{7} + \sqrt{6}}$, then find the value of $(y + x)$.

- Without drawing the graph, find, in which quadrant or on which axis do each of the following points lie? (a) (-2, 4), (b) (3, -1), (c) (-3, -5), (d) (-1,0), (e) (1, 2), (f) (0, 4), (g) (-5, -1) and (h) (0, -7).
- Draw the graph of the linear equation x + y = 7. Verify from the graph that (8, -1) is a solution of the equation x + y = 7
- Consider the marks obtained by 50 students of a class in a test, out of 80.

Consider the marks obtained by			y 50 Bladelits of a class in a let			
	Marks	0 - 20	20 - 40	40 - 60	60 - 80	
	No. of Students	14	11	12	13	

Draw a histogram and a frequency polygon for the data on the same graph sheet.

End of the Question Paper

INDIAN SCHOOL MUSCAT FINAL TERM EXAMINATION MATHEMATICS

CLASS: IX

Sub. Code: 041

Time Allotted: 3 Hrs

24.02.2019

Max. Marks: 80

General Instructions:

1. All questions are **compulsory**.

2. The question paper consists of 30 questions divided into four sections A, B, C and D.

- 3. Section-A comprises of 6 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 8 questions of 4 marks each.
- 4. There is no overall choice in this question paper. However, an internal choice has been given for two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each.
- 5. Use of calculator is not permitted.

SECTION - A

- 1 State any one Euclid's axiom.
- Find the mode of the numbers: 14, 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18.
- Find the value of the polynomial $p(m) = m^2 2m + 8$ at m = 2.

OR

If f(x) = 3x + 9, find the value of f(7).

Find the value of $\left[(64)^{\frac{1}{2}} \right]^{\frac{1}{3}}$.

Find the supplement of $\frac{5}{3}$ of a right angle.

The total surface area of a cube is 1014 cm². Find the length of its edge.

OR

Calculate the volume of a cuboid whose dimensions are 8 cm, 6cm and 2.5 cm.

SECTION - B

A die is thrown 100 times and the outcomes are recorded as follows:

Trace is anown 100 times and the outcomes are recorded as follows.							
OUTCOME	1	2	3	4	5	6	
FREQUENCY	25	20	12	18	15	10	

If the die is thrown once again, what is the probability of getting (a) an even number (b) a prime number.

8 Construct a $\triangle ABC$ in which BC = 5cm, AB + AC = 7 cm and $\angle B = 60^{\circ}$.

2

1

1

1

Find the curved surface area of a right circular cone whose slant height is 20cm and height is 16cm. 2 9 (Take $\pi = 3.14$) 2 In the figure, E is any point on median AD of 10 \triangle ABC. Show that ar(\triangle ABE) = ar(\triangle ACE) OR D and E are points on sides AB and AC respectively of \triangle ABC such that $ar(\triangle DBC) = ar(\triangle EBC)$. Prove that DE BC. 11 Find the value of 'k' so that x = -1 and y = -1 is a solution of the linear equation 9kx +2 12ky = 632 12 Prove that equal chords of a circle subtend equal angles at the centre. If a line intersects 2 concentric circles with centre O at A, B, C and D, then prove that AB = CD. Ó **SECTION - C** Three coins were tossed 30 times simultaneously. Each time, the number of tails occurring was 13 3 noted down as follows: 0, 1, 1, 2, 0, 3, 1, 2, 0, 0, 1, 3, 2, 2, 0, 2, 3, 1, 0, 1, 1, 3, 0, 2, 0, 1, 0, 3, 2, 0. Prepare a frequency distribution table for the data. For what value of k, is the polynomial $p(x) = 2x^3 - kx^2 + 3x + 10$ exactly divisible by (x + 2)? 14 3 The polynomial $ax^3 + 3x^2 - 13$ and $2x^3 - 5x + a$ leave the same remainder in each case, when divided by (x-2). Find the value of 'a' The sides of a triangle are 120m, 170m and 250m. Find its area and height of the triangle, if its base 3 15 is 250m. Construct a $\triangle ABC$, in which $\angle B = 30^{\circ}$, $\angle C = 90^{\circ}$ and AB + BC + CA = 12cm. 3 16 3 17 AB and CD are 2 parallel chords of a circle, which is on opposite side of the centre, such that AB =10 cm, and CD = 24 cm. If the distance between the chords is 17 cm, then find the radius of the circle. OR ABCD is a cyclic quadrilateral whose diagonals intersect at E. If $\angle DBC = 70^{\circ}$, $\angle BAC = 30^{\circ}$, find $\angle BCD$. Further, if AB = BC, find $\angle ECD$.

In a parallelogram, show that the angle bisectors of 2 adjacent angles meet at right angle.

AC = 7.8 cm, then find the perimeter of Δ DEF.

In \triangle ABC, D, E and F are the mid points of sides AB, BC and CA. If AB = 6 cm, BC = 7.2 cm and

Page 2 of 4

3

18

In the given figure, PR > PQ and PS bisects \angle QPR. Prove that \angle PSR $> \angle$ PSQ. 19

20 Represent $\sqrt{5}$ on the number line.

Show that $\frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} = 1$.

21 Factorize completely: $16m^3 - 54n^3$. 3

The total surface area of a solid right circular cylinder is 1540 cm². If the height is 4 times the radius 22 of the base, then find the height of the cylinder.

SECTION - D

Consider the marks obtained by 50 students of a class in a test, out of 80. 23

Complete the marks c	otaliiea o	j so stadents of a class in a te			
Marks	0 - 20	20 - 40	40 - 60	60 - 80	
No. of Students	14	11	12	13	

Draw a histogram and a frequency polygon for the data on the same graph sheet.

- Draw the graph of the linear equation x + y = 7. Verify from the graph that (8, -1) is a solution of 24 the equation x + y = 7.

4

- Without drawing the graph, find, in which quadrant or on which axis do each of the following points 25 lie? (a) (-2, 4), (b) (3, -1), (c) (-3, -5), (d) (-1, 0), (e) (1, 2), (f) (0, 4), (g) (-5, -1) and (h) (0, -7).
- 26 In the figure, $\triangle ABC$ and $\triangle ABD$ are such that $AD = BC, \angle CAD = \angle DBC$ and \angle CAB= \angle DBA. Prove that BD = AC.

OR

In the figure, ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. Prove that

- (i) $\Delta ABD \cong \Delta BAC$
- (ii) BD = AC
- (iii) $\angle ABD = \angle BAC$

By long division method, show that (x-3) is a factor of $2x^4 + 3x^3 - 26x^2 - 5x + 6$. 27

A hemispherical bowl, full of milk, has internal diameter 36 cm. The milk is to be filled in 28 cylindrical bottles of radius 3 cm and height 6 cm. How many bottles are required to empty the bowl?

Metallic spheres of radii 6 m, 8 m and 10 m respectively are melted to form a single solid sphere. Find the diameter of the resulting sphere.

In the given figure, AB||CD, CD||EF 29 and $EA \perp AB$. If $\angle BEF = 65^{\circ}$ find the values of w, x, y and z

OR

In the given figure, AP is the angle bisector of $\angle A$ and PQ is the bisector of $\angle ACD$. Prove that $\angle APC = \frac{1}{2} \angle ABC$.

30

If
$$x = \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} - \sqrt{6}}$$
 and $y = \frac{\sqrt{7} - \sqrt{6}}{\sqrt{7} + \sqrt{6}}$, then find the value of $(y + x)$.

End of the Question Paper